प्रश्नपुस्तिका क्रमांक BOOKLET No. 2018

प्रश्नपुस्तिका-II

संच क्र.

203005

स्थापत्य अभियांत्रिकी पेपर - 2

एकूण प्रश्न : 100 एकुण गुण : 200

वेळ: 2 (दोन) तास

सूचना

- (1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.
- (2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- परीक्षा-क्रमांक े भेवटचा अंक
- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद कराताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नांकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच "उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील".

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82" यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनधिकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

ार्यवेक्षकांच्या सूचनेविना हे सील उघडू नये

कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK

1.	stra cons stra	For finding out time 't ₂ ' required to achieve 50% consolidation of 1 m thick clayey strata resting on impermeable rock at bottom and sandy soil at top, a laboratory consolidation test was carried out, using 1 cm thick sample obtained from the same strata. Time "t ₁ " was taken by it to achieve 25% consolidation, under double drainage condition, in the laboratory.											
	Cho	ose the	correct	value of	ratio of	$\left(\frac{\mathbf{t_2}}{\mathbf{t_1}}\right)$	from	the f	followin	g :			
		4,00,00			16,000	(- /	(3)		0,000		None	of the	above
2.	The distance 'D' between centers of piles with top diameter 'd' should not be less												
	than (from practical consideration)												
	(1)	2d		(2)	3 d		(3)	4d		(4)	5 d		
3.	Mat	ch List l	and Li	ist II an	d select	ansv	ver usin	g the co	des giv	en belo	ow:		
		List I			•				List II				
		(Construction Type)							(Suita	ble Cof	ferdar	а Туре	e)
	(a)	Cut-off trench of a dam to be constructed across flowing river						(i)	Cellula	r sheetp	ile cofi	ferdam	
	(b)	Shallo	Shallow foundation of a bridge pier							kment t	ype col	fferdan	n
	(c)	_	ntial rep tion wo		of unde	rwater		(iii)	Single	wall she	etpile	cofferd	am
	(d)	Control of groundwater to prevent entry into deep excavation							Floatin	g steel o	ylinde	r coffer	dam
		(a)	(b)	(c)	(d)								
	(1)	(iv)	(iii)	(ii)	(i)								
	(2)	(ii)	(i)	(iv)	(iii)								
	(3)	(ii)	(iii)	(i)	(iv)								
	(4)	(iii)	(iv)	(ii)	(i)								
4.		void ra			ity of a	soil s	ampl	e ha	ving eq	ual vol	ume of	solids	s and
		Void ra	atio	Poros	ity								
	(-)				-								

	Void ratio	Porosit
(1)	1.0	100%
(2)	0.5	50%
(3)	1.0	50%
(4)	0.5	100%

5. Let E₂ and E₁ represent compaction energy deployed for compacting soil as per modified compaction test and standard compaction test, as per IS.

Choose from the following correct ratio of $\left(\frac{E_2}{E_1}\right)$:

(1) About $4\frac{1}{2}$ times

(2) About $3\frac{1}{2}$ times

(3) About 2 times

- (4) None of the above
- 6. On the same soil sample, both Standard and Modified Proctor compaction tests are conducted in the laboratory. The values of Optimum Moisture Content (OMC) and Maximum Dry Density (MDD) for modified test compared to those for standard compaction test will respectively
 - (1) Increase, Increase

(2) Decrease, Increase

(3) Increase, Decrease

- (4) No change, Increase
- 7. If the permeability, shrinkage and swelling of a compacted soil having same density on dry side of optimum moisture content is compared with compaction on wet side of optimum, the variation in these properties will be
 - (1) more, less, higher

(2) more, more, higher

(3) more, more, less

- (4) less, less, higher
- 8. An embankment has a slope of 30° which was constructed with soil having $C = 30 \text{ kN/m}^2$, $\phi = 20^\circ$ and $\gamma = 15 \text{ kN/m}^3$. The height of embankment is 20 m. Using Taylor's stability no. $\frac{1}{40}$, the factor of safety with respect to cohesion is
 - $(1) \quad 0.25$

 $(2) \quad \dot{2}$

(3) 4

- (4) 1.5
- 9. The degree of consolidation depends upon
 - (1) thickness of clay layer
 - (2) coefficient of permeability
 - (3) co-efficient of consolidation
 - (4) All the above

10.	The loss of head	l due to sudden	expansion of	f a pipe i	is given	by
-----	------------------	-----------------	--------------	------------	----------	----

(1) $h_L = \frac{V_1^2 - V_2^2}{2g}$

(2) $h_L = \frac{0.5 \text{ V}^2}{2g}$

(3) $\mathbf{h_L} = \frac{(\mathbf{V_1} - \mathbf{V_2})^2}{2\mathbf{g}}$

(4) None of the above

11. Bernoulli's equation is derived making assumption that

- (1) the flow is uniform and incompressible
 - (2) the flow is non-viscous, uniform and steady
 - (3) the flow is steady, non-viscous, incompressible and irrotational
 - (4) None of the above

12. For the laminar flow through a circular pipe

- (1) the maximum velocity = 1.5 times the average velocity
- (2) the maximum velocity = 2.0 times the average velocity
- (3) the maximum velocity = 2.5 times the average velocity
- (4) None of the above

13. Depth at which specific energy is minimum is known as

(1) Critical depth

(2) Conjugate depth

(3) Alternate depth

(4) Normal depth

14. In a rectangular channel section, if the channel depth is 2·0 m, the specific energy at critical depth is

- (1) 3.0 m
- (2) 1.33 m
- (3) 2.5 m
- (4) 1.5 m

15. Which of the following statements is correct?

- (1) Centrifugal pumps convert mechanical energy into hydraulic energy by thrust of piston
- (2) Reciprocating pumps convert mechanical energy into hydraulic energy by means of centrifugal forces
- (3) Centrifugal pumps convert mechanical energy into hydraulic energy by means of centrifugal force
- (4) Reciprocating pumps convert hydraulic energy into mechanical energy

16. Dynamic viscosity (μ) has the dimensions	s as
---	------

- MLT^{-2} **(1)**
- $ML^{-1} T^{-1}$ (2)
- $ML^{-1} T^{-2}$ (3)
- (4) $M^{-1}L^{-1}T^{-1}$

17. The submerged body will be in stable equilibrium if

- The centre of buoyancy B is below the centre of gravity G
- (2)The centre of buoyancy B coincides with G
- (3)The centre of buoyancy B is above the metacentre M
- (4)The centre of buoyancy B is above G

18. Continuity equation deals with the law of conservation of

(1) mass momentum

(3) energy (4)None of the above

19. The discharge through a single-acting reciprocating pump is

- (1) $Q = \frac{ALN}{60}$ (2) $Q = \frac{2ALN}{60}$ (3) Q = ALN (4) Q = 2ALN

where A = cross-sectional area of cylinder or piston

L = length of stroke

N = r.p.m. of the crank

20. A turbine is called impulse if at the inlet of the turbine

- total energy is only kinetic energy
- (2)total energy is only pressure energy
- total energy is the sum of kinetic energy and pressure energy (3)
- None of the above **(4)**

21. During suction stroke of a reciprocating pump, the separation may take place

- **(1)** at the end of suction stroke
- in the middle of suction stroke **(2)**
- at the beginning of suction stroke
- (4) None of the above

The specific speed (N_s) of a pump is given by the expression 22.

$$(1) \quad N_{\rm s} = \frac{N\sqrt{Q}}{H_{\rm m}^{5/4}}$$

(2)
$$N_s = \frac{N\sqrt{P}}{H_m^{3/4}}$$

$$(3) \quad N_s = \frac{N\sqrt{Q}}{H_m^{3/4}}$$

$$(4) \quad N_s = \frac{N\sqrt{P}}{H_m^{5/4}}$$

23.	Kap	Kaplan turbine is a/an											
	(1)	impulse turbine	(2)	radial flow impulse	turbine								
	(3)	axial flow reaction turbine	(4)	radial flow reaction	turbine								
24.	A tı	A turbine is a device which converts											
	(1)	Hydraulic energy into mechanical	energy	7									
	(2)	Mechanical energy into hydraulic e	energy										
	(3)	Kinetic energy into mechanical ene	ergy		•								
	(4) Electrical energy into mechanical energy												
25.		In the inlet part of the jet impinging on a Pelton bucket, the velocity of whirl V_{w1} i equal to											
	(1)	absolute velocity of jet at inlet \mathbf{V}_1	(2)	relative velocity of j	et at inlet ${ m V_{r1}}$								
	(3)	zero	(4)	None of the above									
26.		If the turbine has kinetic energy and pressure energy of water at its inlet, then such turbine is known as											
•	(1)	impulse turbine	(2)	reaction turbine									
	(3)	Pelton wheel turbine	(4)	low head turbine									
27.	Whi	Which component is not provided to Pelton wheel turbine?											
_	(1)	Penstock (2) Jet	(3)	Casing (4)	Draft tube								
28.	The artesian aquifer is one where (1) water surface under the ground is at atmospheric pressure (2) water table serves as upper surface of zone of saturation (3) water is under pressure between two impervious strata (4) None of the above												
29.	Lysi	imeter is used to measure											
	(1)	Infiltration	(2)	Evaporation									
	(3)	Evapotranspiration	(4)	Vapour pressure									
30.	Hor	ton's infiltration capacity is given as											
	(1)	$f = f_o + [f_c - f_o] e^{-kt}$	(2)	$f = f_o - [f_c + f_o] e^{-kt}$									
	(3)	$f = f_0 - [f_c - f_0] e^{-kt}$		$f = f_c + [f_o - f_c] e^{-kt}$									
कच्च्य	कामार	ाठी जागा / SPACE FOR ROUGH WORK			DTO								

31. Weibull formula is

$$(1) \quad P = \left(\frac{m}{N+1}\right)$$

$$(2) \quad P = \left(\frac{m}{N-1}\right)$$

$$(3) \quad P = \left(\frac{N+1}{m}\right)$$

$$(4) \quad P = \left(\frac{N-1}{m}\right)$$

(where m is order number and N is number of years of record)

32. The term base flow denotes

- (1) delayed groundwater flow reaching a stream
- (2) delayed groundwater and snowmelt reaching a stream
- (3) delayed groundwater and interflow
- (4) the annual minimum flow in a stream

33. Following is **not** the method of apportionment of total cost of multipurpose reservoir:

- (1) Remaining benefit method
- (2) Use of facilities method
- (3) Equal apportionment
- (4) Direct method

34. Owing to the storage effect, the peak of the outflow hydrograph will be smaller than that of the inflow hydrograph. This reduction in peak value is known as

(1) Lag

(2) Attenuation

(3) Routing

(4) Prism storage

35. An IUH is a direct runoff hydrograph

- (1) of one cm magnitude due to rainfall excess of 1-h duration
- (2) that occurs instantaneously due to a rainfall excess of 1-h duration
- (3) of unit rainfall excess precipitating instantaneously over the catchment
- (4) occurring at any instant in long duration

36. The example of aquifuge is

(1) Clay layer

(2) Sandy layer

(3) Solid granite rocks

(4) Silty clay layer

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

37.	The ratio of the quantity of water stored in the root zone of the crops to the quantity of water actually delivered in the field is											
	(1)	Water conve			(2)	Water appli	cation e	fficiency				
		Water use e	•	-	(4)	None of the						
38.	In border strip method of irrigation, the width of strip is											
	(1)	5 – 10 m	(2)	10 – 20 m	(3)	20 – 30 m	(4)	25 – 30 m				
39.	The	duty of irriga	ation wa	ter for a given	crop is	maximum						
	(1)	on the field			(2)	at the head	of main	canal				
	(3)	at the head	of water	course	(4)	near the distributary						
40.	A cl	A channel designed by Lacey's theory has a mean velocity of one m/s. The silt factor										
	is u	nity. The hyd	raulic m	ean radius wi	ll be							
	(1)	2.5 m	(2)	2·0 m	(3)	1·0 m	(4)	0·5 m				
41.	In d	In design of spillway when $H_e = H_d$, the value of 'C' is (1) 1.00 (2) 1.33 (3) 2.00 (4) 2.20										
	(1)	1.00	(2)	1.33	(3)	2.00	(4)	2·20				
42.	Нув	groscopic wate	er is defi	ned as the								
	(1)	· ·										
	(2)	• •										
	(3)	(3) total water content of the soil when all pores are filled with water.										
	(4)	(4) water held by the soil under capillary action.										
43.	In case of non-availability of space due to topography, the most suitable spillway is											
	(1)	Straight dro	op spillw	ay	(2)	Shaft spillway						
	(3)	Chute spills	way		(4)	Ogee spillw	ay					
44.	The channel after obtaining its section and longitudinal slope will be said to be in											
	(1)	Initial regin	ne		(2)	Permanent	regime					
	(3)	Final regim	e		(4)	Absolute re	gime					
45.	The	The silt load in the stream does <i>not</i> depend upon										
	(1)	nature of th	e soil in	the catchmen	t area							
	(2)	topography	of the ca	atchment area	l							
	(3)	intensity of	rainfall									
	(4)	alignment o	f dam									
कच्च्य	ा कामार	प्ताठी जागा / SP#	ACE FOR	ROUGH WOR	<u> </u>			P.T.O.				

46. Match the design speed recommended for various roads by IRC 86: 1983

List I

) Colloctor --- do

List II

- (a) Collector roads
- (i) 30 kmph

(b) Local roads

- (ii) 80 kmph
- (c) Arterial roads
- (iii) 60 kmph
- (d) Sub-arterial roads
- (iv) 50 kmph

- (a)
- **(b)**
- **(c)**
- (1) (ii)
- (i)
- (iv) (iii)

(d)

(iii)

- (2) (iii)
- (i)
- (ii)
 - ii) (iv)
- (3) (iv)
- (i)
- (ii)
- (4) (ii)
- (iv)
- (iii) (i)

47. IRC recommended % values of camber for different types of road surface can be arranged in descending order of following roads:

- a. Water bound macadam road
- b. Thin bituminous surface road
- c. Cement-concrete road
- d. Earth road

Answer Options:

(1) d, b, c, a

(2) c, a, b, d

(3) d, a, b, c

(4) c, b, a, d

48. The expression for the length of a transition curve (Ls) in meters is

(1) $L_s = \frac{V^3}{CR}$

(2) $L_s = \frac{V^3}{16 \text{ CR}}$

 $(3) \quad L_s = \frac{V^3}{24 \text{ CR}}$

(4) $L_s = \frac{V^3}{46.5 \text{ CR}}$

where

C = Rate of change of radial acceleration in m/s³

R = Radius of the circular curve in metres, and

V = Speed of vehicle in kmph

50. N	a) b) c)	List I Stop s	following	(2) g:	40 km	nph	(3)	50 kmph	(4)	60 kmph							
() () ()	a) b) c)	List I Stop s		g:													
(1	b) c)	Stop s					Match the following:										
(1	b) c)	-	ions					List II									
(6	c)	Give v	-EII		(i)	(i) Circular in shape											
		Give way signs			(ii)	Equilat	eral tı	riangle with	its apex p	ointing upwards							
		Speed	limit si	gns	(iii)	(iii) Octagonal shape											
``	d)	_	ing signs		(iv) Inverted triangle with its apex pointing downwards												
	 ,	(a)	(b)	(c)			w 01101	igic with its	apex pon	ionig downwards							
(-	1)	(i)	(ii)	(iii													
-	1) 2)	(ii)	(i)	(iii		•											
	2) 3)	(iii)	(iv)	(i)	, (ii												
	4)	(iv)	(iii)	(ii)													
(-	-)	(14)	(111)	(11)	(1)	•											
51. T	he	dowel l	oars are	used in	n rigid	paveme	nts fo										
	1)		ng tensi		_	· • · · · · · ·		-									
	2)		ng bend				•										
	3)			•													
	4)	resisting shear stresses transferring load from one portion to another															
	± <i>)</i>	ti alisi	erring ic	au iro	шопе	portion	o ano	tner									
52. G	Group index method of designing flexible pavement is based on																
а		Oup index method of designing flexible pavement is based on Plasticity index															
b			strengtl														
c.		CBR v	_														
d			nt fines														
A	Answer Options:																
	1)	a, b ar		(2)	b and	c	(3)	a and d	(4)	a, c and d							
53. G	rac	le separ	ration	_													
a.		_	rossing	traffic													
b.			inimize		and ha	azard											
c.			per optic														
d.					and in	convenie	ence										
(1	L)	a and	<u> </u>	(2)	b and	c	(3)	a and b	(4)	c and d							

54. Consider the following statements:

Collision diagram is used to

- a. study accident patterns
- b. eliminate accidents
- c. determine remedial measures
- d. make statistical analysis of accidents

Answer Options:

(1) a and b are correct

(2) a and c are correct

(3) c and d are correct

(4) b and d are correct

55. A bridge has a linear waterway of 150 metres constructed across a stream whose natural linear waterway is 200 metres. If the average flood depth is 3 metres and average flood discharge is 1200 m³/sec, the velocity of approach is

- (1) 2·0 m/sec
- (2) 2.66 m/sec
- (3) 6.0 m/sec
- (4) 8.0 m/sec

56. The width of carriageway required will depend on the intensity and volume of traffic anticipated to use the bridge.

- a. Except on minor village roads all bridges must provide for at least two lane width
- b. The minimum width of carriageway is 4.25 m for one lane bridge
- c. The minimum width of carriageway is 3.75 m for one lane bridge
- d. The minimum width of carriageway is 7.5 m for two lane bridge

Which of the statements given above is/are incorrect?

- (1) Only a
- (2) Only a and c
- (3) Only a, c and d
- (4) Only c

57. Which of the following shall be considered while designing high level bridges for buoyancy effect?

- (1) Full buoyancy for the superstructure
- (2) Full buoyancy for the abutments
- (3) Buoyancy forces due to submerged part of the substructure and foundation
- (4) Partial buoyancy for superstructure

58. The normal depth of scour for alluvial rivers is determined by Lacey's formula

 $(1) \quad \sqrt{0.475} \left(\frac{f}{Q} \right)$

 $(2) \quad 0.475 \left(\frac{\mathbf{Q}}{\mathbf{f}}\right)^3$

 $(3) \quad 0.475^{\frac{3}{4}} \sqrt{\frac{f}{Q}}$

 $(4) \quad 0.475^3 \ \sqrt{\frac{Q}{f}}$

59.	Roller bearings are used in bridges for the span of												
	(1)	18 to 2	24 m	(2)	12 to 18	8 m	(3)	6 to 12 m	(4)	Up to 6 m			
60.	The	maxim	um scou	r depth	dm for	coi	ndition of	flow at nose					
	(1)	1·50 d	l	(2)	1·75 d		(3)	2·00 d	(4)	2·75 d			
61.	For	high le	vel b ri dg	es, the	freeboa	ard :	should <i>no</i>	of be less that	an				
	(1)	200 m	ım	(2)	400 mr	n	(3)	600 mm	(4)	800 mm			
62.	_	per IRC or bridg	_	ations,	the mi	nim	um ceme	nt content ir	concrete	e is for			
	(1)	340 k	g/m ³				(2)	$350~\mathrm{kg/m^3}$					
	(3)	360 k	g/m ³				(4)	370 kg/m^3					
63.		For IRC class A and B loading, the impact factor, for R.C.C. bridges having span more than 45 metres, is taken as											
				•	ken as 0.088		(2)	0.000	. (4)	0.154			
	(1)	0.078		(2)	0.000		(3)	0.098	(4)	0.154			
64.	Wh	ich patt	ern of th	e drilli	ng is n e	 o <i>t</i> u	sed for sh	nafts?					
	(1)		al wedge				(2)	End wedge					
	(3)	Vertic	cal wedge	e cut			. (4)	Alternate	wedge cu	t			
65.	From the economy point of view, tunnelling is advisable when the depth of open cu												
		ore tha	ın	(9)	10		(2)	10	(4)	0.4			
	(1)	6 m		(2)	12 m		(3)	18 m	(4)	24 m			
66.	Match the following:												
		List I	[List II						
	(a)	Firm	ground			(i)	Needing	instant sup	port all r	ound			
	(b)	Runn	ing groui	nd		(ii)	Needing	instant sup	port for r	oof			
	(c)	Self-s	upportin	g groui	nd	(iii)	No need	of instant s	upport for	r roof			
	(d)	11 00			,	(iv)	Soil star short ler		d for sho	rt period and			
		(a)	(b)	(c)	(d)								
	(1)	(i)	(ii)	(iii)	(iv)			•					
	(2)	(iv)	(ii)	(i)	(iii)					· .			
	(3)	(iii)	(i)	(iv)	(ii)								
	(4)	(iv)	(iii)	(ii)	(i)								
कच्च्य			T / SPACE			WO!			_	- DTO			

67.	Which of the following methods is suitable for the construction of large-sized railway or highway tunnels?																
	(1)	Forep	oling met	hod			(2) American method										
	(3)	Case	method				(4)	Full face met	hod								
68.	Match the List I (Shape of Tunnel) with List II (Characteristics):																
		List I	Ι				Lis	t II									
	(a)	Circu	lar section	ı		(i)	Pro	vides more wo	rking	space							
	(b)	Horse	shoe secti	on	٠	(ii)	Pro for	sectional area									
	(c)	Egg sl	hape			(iii)	Vertical sides with flat floor			floor							
	(d)	Segme	s-sectio	n	(iv)	Provides least cross-section area at the bottom			tion area at								
		(a)	(b)	(c)	(d)												
	(1)	(ii)	(i)	(iv)	(iii)												
	(2)	(i)	(ii)	(iii)	(iv)												
	(3)	(iii)	(iv)	(i)	(ii)												
•	(4)	(iv)	(iii)	(ii)	(i)												
69.	In order to maintain the desired shape of the tunnel, the cross section of the tunnel must be checked at a regular interval of																
	(1) 2 m to 3 m (2) 4 m to 6 m (3) 5 m to 7 m (4) 8 m to 15 m																
70.	Assertion (A): Faces for attacking the excavation and construction of tunnels are opened by constructing pilot tunnels.																
	Reas	soning (locations when		ontal approach to ical shafts.							
	(1)	Both (A) and (R)	are tr	ue and (R) is tl	ne co	rrect explanat	ion of	A							
	(2)	(A) is	true and (R) is fa	lse .												
	(3)	(A) is :	false and ((R) is tr	ue												
	(4)	Both (A) and (R)) are fa	lse												

71.	Which of the following methods is generally considered the most efficient system for ventilation of tunnels?										
	(1)	Driving a shaft through the t	tunnel								
	(2)	Driving a drift through the to	op portion								
	(3)	(3) Blow in method									
	(4) Combination of blowing and exhausting										
72.		In case of long tunnels, the drainage system consists of sump wells which are located at regular intervals of about									
	(1)	50 m to 100 m	(2)	100 m to 200 m							
	(3)	200 m to 300 m	(4)	300 m to 500 m							
73.	Air	valves or Air-relief valves are	provided at								
	(1)	Summits	(2)	Valleys							
	(3)	All joints	(4)	None of the above							
74.	Which of the following treatments reduces salinity of water?										
	a.										
	b.	o. Carbon filtration									
	c.	Reverse osmosis									
	d.	Electro dialysis									
	Answer Options:										
	(1)	Only a and b									
	(2)	Only b and c									
	(3)	Only c and d									
	(4)	Only b, c and d									
	The	minimum velocity of flow in a	sewer shoul	d be ideally							
	(1)	equal to self-cleansing velocit	ty								
	(2)	equal to non-scouring velocity	у								
	(3)	less than self-cleansing veloc	ity								

(4) more than non-scouring velocity

76.	Sewer lines having difference of more than 600 mm in the water lines and invert level of two sewers are connected with a										
	(1)	Siphon	(2)	Manhole							
	(3)	Inspection chamber	(4)	Drop manhole							
			(1)								
77.	Gen	erally the period chosen for a standa	rd B.C	O.D. test is							
	(1)	1 day	(2)	5 days							
	(3)	8 days	(4)	20 days							
78.	For	rapid sand filter, sand should have t	he foll	lowing specifications :							
	(1)	Effective size $0.1 - 0.5 \text{ mm}$		·							
		Uniformity co-efficient = 2 to 4									
	(2)	Effective size $0.2 - 0.5 \text{ mm}$		·							
		Uniformity co-efficient = 2 to 3									
	(3)	Effective size $0.45 - 0.7 \text{ mm}$		•							
		Uniformity co-efficient = 1.3 to 1.7									
	(4)	Effective size 0.7 – 0.9 mm									
		Uniformity co-efficient = 1 to 5									
	If waste water is disposed off into a natural stream, the maximum dissolved oxygen										
79.		depletion occurs in the zone of									
	(1)	degradation	(2)	active decomposition							
	(3)	clearer water	(4)	recovery							
80.	In a sedimentation tank design, surface overflow rate (S.O.R.) is calculated as										
	(1)	Surface area/velocity of water Q/V/V	,								
	(2)	Discharge/plan area Q/B×L									
	(3)	Volume of tank/discharge V/Q									
	(4)	Surface area/settling velocity of the	parti	cle A/V _s							
81.	The	waste water treatment unit which is	insta	alled to remove floating substances like							
	grea	ase, oil, fats, waxes, etc. is									
	(1)	skimming tank	(2)	detritus tank							
	(3)	sedimentation tank	(4)	None of the above							
कच्च्य	ा कामा	साठी जागा / SPACE FOR ROUGH WORK									

- 82. An alidade in which one edge is bevelled is called as
 - (1) Soft edge

(2) Fiducial edge

(3) Telescopic edge

(4) Swivel edge

- 83. Contour interval is the
 - (1) vertical distance between two consecutive contours
 - (2) horizontal distance between two consecutive contours
 - (3) vertical distance between two points on the same contour
 - (4) horizontal distance between two points on the same contour
- 84. The length of a simple circular curve of radices R metres and intersection angle D degrees will be
 - $(1) \quad \mathbf{R} \cdot \frac{\mathbf{D}}{2}$

(2) $\frac{\pi}{180}$. R. $\frac{D}{2}$

(3) $\frac{\pi}{180}$. R. $\frac{D}{4}$

- (4) $\frac{\pi}{180}$. R. D
- 85. The height of an instrument is the
 - (1) Height of the instrument above the ground
 - (2) Height between ground and telescope
 - (3) Elevation of the plane of sight
 - (4) Reduced level of station
- 86. If a tachometer is fitted with an anallactic lens, then,
 - (1) Additive constant is 100 and multiplying constant is zero
 - (2) Multiplying constant is 100 and additive constant is zero
 - (3) Both additive and multiplying constants are 100
 - (4) Both multiplying and additive constants are 50
- 87. Following is constant for a contour map:
 - (1) Horizontal equivalent
 - (2) Benchmark
 - (3) Contour interval
 - (4) Topography

88. The combined correction due to curvature and refraction is given by

(1) $0.095 d^2$

(2) $0.01122 d^2$

(3) $0.06735 d^2$

(4) $0.572 d^2$

(where d is in km)

89. Reiteration method is also called as

(1) Method of series

(2) Repetition method

(3) Direction method

(4) Both (1) and (3)

90. The expression for sensitivity of the bubble tube (α) can be taken as, ___

where

n = No. of divisions

s = Net staff reading

d = Distance

R = Radius of curvature

l =Length of one division

- (1) $\alpha = \frac{s}{nd} \times 206265$ seconds
- (2) $\alpha = \frac{d}{ns} \times 206265$ seconds

(3) $\alpha = \frac{nlD}{R}$ radians

(4) $\alpha = \frac{s}{nR} \cdot \frac{l}{D}$

91. Closing error in theodolite traverse survey is given as

- (1) $e = \sqrt{(\sum L^2 + \sum D^2)^2}$
- (2) $e = \sqrt{(\sum L)^2 + (\sum D)^2}$

(3) $e = \sqrt{\sum L + \sum D}$

(4) $e = \sqrt{(\sum L)^2 - (\sum D)^2}$

92. If the length of 16 mm diameter bar is 10 m, then its weight is

(1) 16.5 kg

(2) 16.9 kg

(3) 15.8 kg

(4) 16.2 kg

93. Security deposit is

- (1) deposited at the time of filling tender
- (2) deposited by the contractor whose tender is accepted
- (3) deposited at the time of opening tenders
- (4) deposited for fair competition

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

94.	In order to compute the quantities of R.C.C. beams, lengths of beams are measured to the										
	(1)	nearest millimetre	(2)	nearest half centimetre							
	(3)	nearest centimetre	(4)	nearest inch							
95.	In case of which type of contract, unbalanced tender is not possible?										
	(1)	Open tender	(2)	Item rate contract							
	(3)	Percentage rate contract	(4)	Unit price contract							
96.	Which of the following types of contract is used for execution of large works financed by public bodies or the government?										
	(1)	Item rate contract	(2)	Percentage rate contract							
	(3)	Cost plus type contract	(4)	Target contract							
97.	Assertion (A): Earnest money deposit is usually 1% to 2% of the total estimated cost of the work.										
	Rea	soning(R): Earnest money deposition.	osit pı	revents unnecessary and unhealthy							
	(1)	Both (A) and (R) are true	(2)	Both (A) and (R) are false							
	(3)	(A) is true and (R) is false	(4)	(A) is false and (R) is true							
98.	Equation for cement requirement in tonnes for four-storey R.C.C. framed building (super structure) recommended by C.B.R.I. is										
	(1)	0·153 A + 0·57	(2)	0·145 A + 0·54							
	(3)	0·182 A – 0·35	(4)	2·26 A + 66·8							
	(wh	ere A is plinth area in sq. mt)									
99.	While submitting tender by three envelope method, which envelope contains rates/amount offered by the tenderer?										
	(1)	Envelop : 3	(2)	Envelope nos : 1 and 2							
	(3)	Envelope: 1	(4)	None of the above							
100.	The is	length of L-bend for Tor steel to be	e provid	led at each end of the reinforcing bars							
	(1)	12 times diameter	(2)	6 times diameter							
	(3)	3 times diameter	(4)	150 mm							
 कच्च्या	कामार	गठी जागा / SPACE FOR ROUGH WORK		P.T.O.							

सूचना - (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतःबरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्र	श्नि
-----------	------

Pick out	tne correct	word to mi	in the blain	& :
			•	

- Q. No. 201. I congratulate you ______ your grand success.

 (1) for (2) at
 - 1) 10r (2) at
 - (3) on (4) about ह्या प्रश्नाचे योग्य उत्तर "(3) on" असे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल. यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक "(3)" हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.
- प्र. क्र. 201. 1 2 4

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK